本文共 23899 字,大约阅读时间需要 79 分钟。
引用:https://tech.meituan.com/2018/11/15/java-lock.html
加锁过程:https://www.cnblogs.com/hkdpp/p/11917383.html AQS:https://www.cnblogs.com/waterystone/p/4920797.html
Java提供了种类丰富的锁,每种锁因其特性的不同,在适当的场景下能够展现出非常高的效率。本文旨在对锁相关源码(本文中的源码来自JDK 8和Netty 3.10.6)、使用场景进行举例,为读者介绍主流锁的知识点,以及不同的锁的适用场景。
Java中往往是按照是否含有某一特性来定义锁,我们通过特性将锁进行分组归类,再使用对比的方式进行介绍,帮助大家更快捷的理解相关知识。下面给出本文内容的总体分类目录:
乐观锁与悲观锁是一种广义上的概念,体现了看待线程同步的不同角度。在Java和数据库中都有此概念对应的实际应用。
对于同一个数据的并发操作,悲观锁:认为自己在使用数据的时候一定有别的线程来修改数据,因此在获取数据的时候会先加锁,确保数据不会被别的线程修改。Java中,synchronized关键字和Lock的实现类都是悲观锁。
乐观锁:认为自己在使用数据时不会有别的线程修改数据,所以不会添加锁,只是在更新数据的时候去判断之前有没有别的线程更新了这个数据。如果这个数据没有被更新,当前线程将自己修改的数据成功写入。如果数据已经被其他线程更新,则根据不同的实现方式执行不同的操作(例如报错或者自动重试)。
乐观锁在Java中是通过使用无锁编程来实现,最常采用的是CAS算法,Java原子类中的递增操作就通过CAS自旋实现的。
我们来看下乐观锁和悲观锁的调用方式示例:
// ------------------------- 悲观锁的调用方式 -------------------------// synchronizedpublic synchronized void testMethod() { // 操作同步资源}// ReentrantLockprivate ReentrantLock lock = new ReentrantLock(); // 需要保证多个线程使用的是同一个锁public void modifyPublicResources() { lock.lock(); // 操作同步资源 lock.unlock();}// ------------------------- 乐观锁的调用方式 -------------------------private AtomicInteger atomicInteger = new AtomicInteger(); // 需要保证多个线程使用的是同一个AtomicIntegeratomicInteger.incrementAndGet(); //执行自增1
通过调用方式示例,我们可以发现悲观锁基本都是在显式的锁定之后再操作同步资源,而乐观锁则直接去操作同步资源。那么,为何乐观锁能够做到不锁定同步资源也可以正确的实现线程同步呢?我们通过介绍乐观锁的主要实现方式 “CAS” 的技术原理来为大家解惑。
CAS全称 Compare And Swap(比较与交换),是一种无锁算法。在不使用锁(没有线程被阻塞)的情况下实现多线程之间的变量同步。java.util.concurrent包中的**原子类就是通过CAS来实现了乐观锁。**它实际上是直接利用了 CPU 层面的指令,所以性能很高。
其中比较与交换:
这是一个不断循环如下代码do while循环体中的过程,一直比较直到V==A时,CAS通过院子操作的收到将变量被修改B成功为止。CAS本身是由硬件指令来提供支持的,换句话说,硬件中是通过一个原子指令来实现比较与交换的;因此,CAS可以确保变量操作的原子性的。
public final int getAndSetInt(Object var1, long var2, int var4) { //源码 int var5; do { var5 = this.getIntVolatile(var1, var2); } while(!this.compareAndSwapInt(var1, var2, var5, var4)); return var5; }
CAS算法涉及到三个操作数:
当且仅当 V 的值等于 A 时,CAS通过原子方式用新值B来更新V的值(“比较+更新”整体是一个原子操作),否则不会执行任何操作。一般情况下,“更新”是一个不断重试的操作。
附:就是先判断是否V==A,如果不满足,更新内存V=A,再重新比较。
之前提到java.util.concurrent包中的原子类,就是通过CAS来实现了乐观锁,那么我们进入原子类AtomicInteger的源码,看一下AtomicInteger的定义:
Class var0 = Reflection.getCallerClass();
这行代码获取 那个加载Unsafe.class的对象,然后通过 if (!VM.isSystemDomainLoader(var0.getClassLoader()))
中的var0.getClassLoader()
获取类加载,由于Unsafe类是属于JDK核心包里面的,所以它限定里面的类必须由Bootstrap ClassLoader(启动类加载器),但是如果你要用一个类去引用加载Unsafe,通常这个普通类都用System ClassLoader(应用类加载器)去进行加载,所以如果我们在自己程序不能通过这种直接方式去获取Unsafe对象。 附: 想了解反射机制可以看我这篇文章https://blog.csdn.net/weixin_42754971/article/details/113706745
回到主题前面图根据定义我们可以看出各属性的作用:
接下来,我们查看AtomicInteger的自增函数incrementAndGet()的源码时,发现自增函数底层调用的是unsafe.getAndAddInt()。但是由于JDK本身只有Unsafe.class,只通过class文件中的参数名,并不能很好的了解方法的作用,所以我们通过OpenJDK 8 来查看Unsafe的源码:
// ------------------------- JDK 8 -------------------------// AtomicInteger 自增方法public final int incrementAndGet() { return unsafe.getAndAddInt(this, valueOffset, 1) + 1;}// Unsafe.classpublic final int getAndAddInt(Object var1, long var2, int var4) { int var5; do { var5 = this.getIntVolatile(var1, var2); } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4)); return var5;}// ------------------------- OpenJDK 8 -------------------------// Unsafe.javapublic final int getAndAddInt(Object o, long offset, int delta) { int v; do { v = getIntVolatile(o, offset); } while (!compareAndSwapInt(o, offset, v, v + delta)); return v;}
Unsafe.class的getAndAddInt()
Unsafe.java的getAndAddInt()
如果我们需要对一个数进行加法操作,应该怎样去实现呢?我们模拟多个线程情况下进行操作。
public class ThreadDemo implements Runnable { private int count = 0; @Override public void run() { for (int i = 0; i < 100; i++) { addCount(); } } private void addCount() { count++; } public int getCount() { return count; }}//ThreadTest.java 创建线程池,提交10个线程执行,预期结果应该是1000public class ThreadTest { public static void main(String[] args) { ExecutorService threadPool = Executors.newFixedThreadPool(10); ThreadDemo threadDemo = new ThreadDemo(); for (int i = 0; i < 10; i++) { threadPool.submit(threadDemo); } threadPool.shutdown(); System.out.println(threadDemo.getCount()); }}
运行结果:874 或其他,与预期结果不符合。
执行出来的结果并不是想象中的结果。这是为什么呢?这跟线程的执行过程有关。此时可以用volatile关键字。它的作用是保证对象在内存中的可见性。
修改ThreadDemo中的count字段 private volatile int count = 0; 此时执行结果:900 或其他,与预期结果不符合。此时还是并未得出正确执行结果。为什么?
线程安全主要体现在三个方面:
目前可见性已经实现了,缺少原子性的操作,因为同一时刻,多个线程对其操作,会将改动后的最新值读取到自己的工作内存进行操作,最终只能得到后一个执行线程操作的结果,就是说多个线程有可能在同一个值的基础上同时实现+1操作,所以相当于少了一步操作,就会造成数据的不一致。
此时可以使用JUC的Atomic包下面的类来进行操作。
public class ThreadDemo implements Runnable { private AtomicInteger count = new AtomicInteger(0); @Override public void run() { for (int i = 0; i < 100; i++) { // 递增 count.getAndIncrement(); } } public int getCount() { return count.get(); }}
执行结果: 1000,符合预期值。
使用synchronized进行加法:
public class ThreadDemo implements Runnable { private int count = 0; @Override public void run() { for (int i = 0; i < 100; i++) { // 递增 synchronized (ThreadDemo.class) { count++; } } } public int getCount() { return count; }}
运行结果: 1000,符合预期值。
synchronized是重量级锁,是悲观锁,就是无论你线程之间发不发生竞争关系,它都认为会发生竞争,从而每次执行都会加锁。在并发量大的情况下,如果锁的时间较长,那将会严重影响系统性能。
CAS操作中我们可以看到getAndAddInt方法的自旋操作,如果并发量大的话会长时间自旋,那么肯定会对系统造成压力并且浪费资源, 优化:CAS操作只能保证一个变量的原子操作:可通过AtomicReference组件来实现对多个变量的原子操作
而且如果value值从A->B->A,那么CAS就会认为这个值没有被操作过,这个称为CAS操作的"ABA"问题。优化:加版本号(标记位)来处理
在介绍自旋锁前,我们需要介绍一些前提知识来帮助大家明白自旋锁的概念。
阻塞或唤醒一个Java线程需要操作系统切换CPU状态来完成,这种状态转换需要耗费处理器时间。如果同步代码块中的内容过于简单,状态转换消耗的时间有可能比用户代码执行的时间还要长。
在许多场景中,同步资源的锁定时间很短,为了这一小段时间去切换线程,线程挂起和恢复现场的花费可能会让系统得不偿失。如果物理机器有多个处理器,能够让两个或以上的线程同时并行执行,我们就可以让后面那个请求锁的线程不放弃CPU的执行时间,看看持有锁的线程是否很快就会释放锁。
而为了让当前线程“稍等一下”,我们需让当前线程进行自旋,如果在自旋完成后前面锁定同步资源的线程已经释放了锁,那么当前线程就可以不必阻塞而是直接获取同步资源,从而避免切换线程的开销。这就是自旋锁。
自旋锁的实现原理同样也是CAS,AtomicInteger中调用unsafe进行自增操作的源码中的do-while循环就是一个自旋操作,如果修改数值失败则通过循环来执行自旋,直至修改成功。
自旋锁在JDK1.4.2中引入,使用-XX:+UseSpinning来开启。JDK 6中变为默认开启,并且引入了自适应的自旋锁(适应性自旋锁)。
自适应意味着自旋的时间(次数)不再固定,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。
自适应自旋解决的是“锁竞争时间不确定”的问题。JVM很难感知到确切的锁竞争时间,而交给用户分析就违反了JVM的设计初衷。自适应自旋假定不同线程持有同一个锁对象的时间基本相当,竞争程度趋于稳定,因此,可以根据上一次自旋的时间与结果调整下一次自旋的时间。
这四种锁是指锁的状态,专门针对synchronized的。在介绍这四种锁状态之前还需要介绍一些额外的知识。
首先为什么Synchronized能实现线程同步?
在回答这个问题之前我们需要了解两个重要的概念:“Java对象头”、“Monitor”。
Java对象头
synchronized是悲观锁,在操作同步资源之前需要给同步资源先加锁,这把锁就是存在Java对象头里的,而Java对象头又是什么呢?
我们以Hotspot虚拟机为例,Hotspot的对象头主要包括两部分数据:Mark Word(标记字段)、Klass Pointer(类型指针)。
Monitor
Monitor:可以理解为一个同步工具或一种同步机制,通常被描述为一个对象。每一个Java对象就有一把看不见的锁,称为内部锁或者Monitor锁。
Monitor是线程私有的数据结构,每一个线程都有一个可用monitor record列表,同时还有一个全局的可用列表。每一个被锁住的对象都会和一个monitor关联,同时monitor中有一个Owner字段存放拥有该锁的线程的唯一标识,表示该锁被这个线程占用。
现在话题回到synchronized,synchronized通过Monitor来实现线程同步,Monitor是依赖于底层的操作系统的Mutex Lock(互斥锁)来实现的线程同步。
如同我们在自旋锁中提到的“阻塞或唤醒一个Java线程需要操作系统切换CPU状态来完成,这种状态转换需要耗费处理器时间。如果同步代码块中的内容过于简单,状态转换消耗的时间有可能比用户代码执行的时间还要长”。这种方式就是synchronized最初实现同步的方式,这就是JDK 6之前synchronized效率低的原因。这种依赖于操作系统Mutex Lock所实现的锁我们称之为“重量级锁”,JDK 6中为了减少获得锁和释放锁带来的性能消耗,引入了“偏向锁”和“轻量级锁”。
所以目前锁一共有4种状态,级别从低到高依次是:无锁、偏向锁、轻量级锁和重量级锁。锁状态只能升级不能降级。
通过上面的介绍,我们对synchronized的加锁机制以及相关知识有了一个了解,那么下面我们给出四种锁状态对应的的Mark Word内容,然后再分别讲解四种锁状态的思路以及特点:
无锁没有对资源进行锁定,所有的线程都能访问并修改同一个资源,但同时只有一个线程能修改成功。
无锁的特点就是修改操作在循环内进行,线程会不断的尝试修改共享资源。如果没有冲突就修改成功并退出,否则就会继续循环尝试。如果有多个线程修改同一个值,必定会有一个线程能修改成功,而其他修改失败的线程会不断重试直到修改成功。上面我们介绍的CAS原理及应用即是无锁的实现。无锁无法全面代替有锁,但无锁在某些场合下的性能是非常高的。
自旋锁的目标是降低线程切换的成本。如果锁竞争激烈,我们不得不依赖于重量级锁,让竞争失败的线程阻塞;如果完全没有实际的锁竞争,那么申请重量级锁都是浪费的。轻量级锁的目标是,减少无实际竞争情况下,使用重量级锁产生的性能消耗,包括系统调用引起的内核态与用户态切换、线程阻塞造成的线程切换等。
是指当锁是偏向锁的时候,被另外的线程所访问,偏向锁就会升级为轻量级锁,其他线程会通过自旋(归根到底依然是CAS)的形式尝试获取锁,不会阻塞,从而提高性能。
在代码进入同步块的时候,如果同步对象锁状态为无锁状态(锁标志位为“01”状态,是否为偏向锁为“0”),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝,然后拷贝对象头中的Mark Word复制到锁记录中。
拷贝成功后,虚拟机将使用CAS操作尝试将对象的Mark Word更新为指向Lock Record的指针,并将Lock Record里的owner指针指向对象的Mark Word。
**如果这个更新动作成功了,那么这个线程就拥有了该对象的锁,并且对象Mark Word的锁标志位设置为“00”,**表示此对象处于轻量级锁定状态。
如果轻量级锁的更新操作失败了,虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果是就说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行,否则说明多个线程竞争锁。
缺点同自旋锁类似,若当前只有一个等待线程,则该线程通过自旋进行等待。但是当自旋超过一定的次数,或者一个线程在持有锁,一个在自旋,又有第三个来访时,轻量级锁升级为重量级锁。
如果不仅仅没有实际竞争,自始至终,使用锁的线程都只有一个,那么,维护轻量级锁都是浪费的。偏向锁的目标是,减少无竞争且只有一个线程使用锁的情况下,使用轻量级锁产生的性能消耗。轻量级锁每次申请、释放锁都至少需要一次CAS,但偏向锁只有初始化时需要一次CAS。
偏向锁:**是指一段同步代码一直被一个线程所访问,那么该线程会自动获取锁,降低获取锁的代价。**在大多数情况下,锁总是由同一线程多次获得,不存在多线程竞争,所以出现了偏向锁。其目标就是在只有一个线程执行同步代码块时能够提高性能。
当一个线程访问同步代码块并获取锁时,会在Mark Word里存储锁偏向的线程ID(重点)。在线程进入和退出同步块时不再通过CAS操作来加锁和解锁,而是检测Mark Word里是否存储着指向当前线程的偏向锁。引入偏向锁是为了在无多线程竞争的情况下尽量减少不必要的轻量级锁执行路径,因为轻量级锁的获取及释放依赖多次CAS原子指令,而偏向锁只需要在置换ThreadID的时候依赖一次CAS原子指令即可。
偏向锁只有遇到其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁,线程不会主动释放偏向锁。偏向锁的撤销,需要等待全局安全点(在这个时间点上没有字节码正在执行),它会首先暂停拥有偏向锁的线程,判断锁对象是否处于被锁定状态。撤销偏向锁后恢复到无锁(标志位为“01”)或轻量级锁(标志位为“00”)的状态。
偏向锁在JDK 6及以后的JVM里是默认启用的。可以通过JVM参数关闭偏向锁:-XX:-UseBiasedLocking=false,关闭之后程序默认会进入轻量级锁状态。
升级为重量级锁时,锁标志的状态值变为“10”,此时Mark Word中存储的是指向重量级锁的指针,此时等待锁的线程都会进入阻塞状态。
整体的锁状态升级流程如下:
此处一定好奇: 那个锁是怎么通过场景的变化进行升级的呢?
公平锁:是指多个线程按照申请锁的顺序来获取锁,线程直接进入队列中排队,队列中的第一个线程才能获得锁。公平锁的优点是等待锁的线程不会饿死。
缺点:是整体吞吐效率相对非公平锁要低,等待队列中除第一个线程以外的所有线程都会阻塞,CPU唤醒阻塞线程的开销比非公平锁大。非公平锁:是多个线程加锁时直接尝试获取锁,获取不到才会到等待队列的队尾等待。但如果此时锁刚好可用,那么这个线程可以无需阻塞直接获取到锁,所以非公平锁有可能出现后申请锁的线程先获取锁的场景。
下面我们来看一下公平锁与非公平锁的加锁方法的源码:
再进入hasQueuedPredecessors(),可以看到该方法主要做一件事情:主要是判断当前线程是否位于同步队列中的第一个。如果是则返回true,否则返回false。
综上,公平锁就是通过同步队列来实现多个线程按照申请锁的顺序来获取锁,从而实现公平的特性。
非公平锁加锁时不考虑排队等待问题,直接尝试获取锁,所以存在后申请却先获得锁的情况。//否则,判断当前线程是否是正在持有锁的线程 else if (current == getExclusiveOwnerThread()) { //如果是,则判断重入次数 int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } //否则,返回false return false;
这部分代码是下面讲解的可重入锁锁实现的关键,如果当前线程是持有锁的可执行线程,setState(nextc),让state仍然不为0,即占用着锁,不给其他线程竞争获取的机会。
这里延补如果c不等于0 即获取锁失败的情况,即NotfairSync或如果tryAcquire失败了,即执行tryAcquire()方法直接返回false给acquire方法。在acquire()方法内,!tryAcquire()为true,所以要进行第二个判断acquireQueued(addWaiter(Node.EXCLUSIVE),arg)
public final void acquire(int arg) { //尝试获取锁,tryAcquire由NotfairSync实现 //如果tryAcquire失败,就将当前线程包装成一个排他锁模式的Node对象(具体可以看addWaiter方法)然后入队列acquireQueued。 if (!tryAcquire(arg) && //tryAcquire失败触发acquireQueued acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt();}
将新加入的线程结点加入到队列尾部
private Node addWaiter(Node mode) { //将当前线程设置为线程结点 Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure //将队列的尾节点赋给pred Node pred = tail; //判断pred是否为空结点 if (pred != null) { //将当前线程(t2线程结点)结点的前驱结点设为pred node.prev = pred; //将node结点cas操作 if (compareAndSetTail(pred, node)) { //建立连接关系 pred.next = node; return node; } } enq(node); return node; }
这段代码首先会将线程t2设置成线程结点,判断队列中是否存在线程结点,如果不存在,则执行enq(node)先构造一个空的线程结点。
private Node enq(final Node node) { //死循环 for (;;) { Node t = tail; if (t == null) { // Must initialize //构造一个空节点 if (compareAndSetHead(new Node())) tail = head; } else { //将线程t2结点加入队列 node.prev = t; if (compareAndSetTail(t, node)) { t.next = node; return t; } } } }
图解构造线程结点
final boolean acquireQueued(final Node node, int arg) { boolean failed = true;//标记是否成功拿到资源 try { boolean interrupted = false;//标记等待过程中是否被中断过 //又是一个“自旋”! for (;;) { final Node p = node.predecessor();//拿到前驱 //如果前驱是head,即该结点已成老二,那么便有资格去尝试获取资源(可能是老大释放完资源唤醒自己的,当然也可能被interrupt了)。 if (p == head && tryAcquire(arg)) { setHead(node);//拿到资源后,将head指向该结点。所以head所指的标杆结点,就是当前获取到资源的那个结点或null。 p.next = null; // setHead中node.prev已置为null,此处再将head.next置为null,就是为了方便GC回收以前的head结点。也就意味着之前拿完资源的结点出队了! failed = false; // 成功获取资源 return interrupted;//返回等待过程中是否被中断过 } //如果自己可以休息了,就通过park()进入waiting状态,直到被unpark()。如果不可中断的情况下被中断了,那么会从park()中醒过来,发现拿不到资源,从而继续进入park()等待。 if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true;//如果等待过程中被中断过,哪怕只有那么一次,就将interrupted标记为true } } finally { if (failed) // 如果等待过程中没有成功获取资源(如timeout,或者可中断的情况下被中断了),那么取消结点在队列中的等待。 cancelAcquire(node); }}
这段代码主要是判断线程t2结点的前驱结点是否为头结点,如果为头结点就尝试再次获取锁,-> if (p == head && tryAcquire(arg)) 否则就直接睡眠,如果不能获取锁就一直睡眠停留在这里,进入等待状态休息,直到其他线程彻底释放资源后唤醒自己,自己再拿到资源,然后就可以去干自己想干的事了。
到这里了,我们先不急着总结acquireQueued()的函数流程,
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { int ws = pred.waitStatus;//拿到前驱的状态 if (ws == Node.SIGNAL) //如果已经告诉前驱拿完号后通知自己一下,那就可以安心休息了 return true; if (ws > 0) { /* * 如果前驱放弃了,那就一直往前找,直到找到最近一个正常等待的状态,并排在它的后边。 * 注意:那些放弃的结点,由于被自己“加塞”到它们前边,它们相当于形成一个无引用链,稍后就会被保安大叔赶走了(GC回收)! */ do { node.prev = pred = pred.prev; } while (pred.waitStatus > 0); pred.next = node; } else { //如果前驱正常,那就把前驱的状态设置成SIGNAL,告诉它拿完号后通知自己一下。有可能失败,人家说不定刚刚释放完呢! compareAndSetWaitStatus(pred, ws, Node.SIGNAL); } return false;}
整个流程中,如果前驱结点的状态不是SIGNAL,那么自己就不能安心去休息,需要去找个安心的休息点,同时可以再尝试下看有没有机会轮到自己拿号。
如果线程找好安全休息点后,那就可以安心去休息了。
private final boolean parkAndCheckInterrupt() { LockSupport.park(this);//调用park()使线程进入waiting状态 return Thread.interrupted();//如果被唤醒,查看自己是不是被中断的。 }
park()会让当前线程进入waiting状态。在此状态下,有两种途径可以唤醒该线程:1)被unpark();2)被interrupt()。注意Thread.interrupted()会清除当前线程的中断标记位。
看了shouldParkAfterFailedAcquire()和parkAndCheckInterrupt(),现在让我们再回到acquireQueued(),总结下该函数的具体流程:
acquireQueued()分析完之后,我们接下来再回到acquire()!再贴上它的源码吧:
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); }
再来总结下它的流程吧:
加锁解锁过程详细可看这篇:https://www.cnblogs.com/hkdpp/p/11917383.html
https://blog.csdn.net/imokboy1/article/details/106658388
可重入锁又名递归锁:是指在同一个线程在外层方法获取锁的时候,再进入该线程的内层方法会自动获取锁(前提锁对象得是同一个对象或者class),不会因为之前已经获取过还没释放而阻塞。Java中ReentrantLock和synchronized都是可重入锁,可重入锁的一个优点是可一定程度避免死锁。下面用示例代码来进行分析:
public class Widget { public synchronized void doSomething() { System.out.println("方法1执行..."); doOthers(); } public synchronized void doOthers() { System.out.println("方法2执行..."); }}
在上面的代码中,类中的两个方法都是被内置锁synchronized修饰的,doSomething()方法中调用doOthers()方法。因为内置锁是可重入的,所以同一个线程在调用doOthers()时可以直接获得当前对象的锁,进入doOthers()进行操作。
如果是一个不可重入锁,那么当前线程在调用doOthers()之前需要将执行doSomething()时获取当前对象的锁释放掉,实际上该对象锁已被当前线程所持有,且无法释放。所以此时会出现死锁。
而为什么可重入锁就可以在嵌套调用时可以自动获得锁呢?我们通过图示和源码来分别解析一下。
还是打水的例子,有多个人在排队打水,此时管理员允许锁和同一个人的多个水桶绑定。这个人用多个水桶打水时,第一个水桶和锁绑定并打完水之后,第二个水桶也可以直接和锁绑定并开始打水,所有的水桶都打完水之后打水人才会将锁还给管理员。这个人的所有打水流程都能够成功执行,后续等待的人也能够打到水。这就是可重入锁
之前我们说过ReentrantLock和synchronized都是重入锁,那么我们通过重入锁ReentrantLock以及非可重入锁NonReentrantLock的源码来对比分析一下为什么非可重入锁在重复调用同步资源时会出现死锁。
首先ReentrantLock和NonReentrantLock都继承父类AQS,其父类AQS中维护了一个同步状态status来计数重入次数,status初始值为0。
释放锁时,可重入锁同样先获取当前status的值,在当前线程是持有锁的线程的前提下。如果status-1 == 0,则表示当前线程所有重复获取锁的操作都已经执行完毕,然后该线程才会真正释放锁。而非可重入锁则是在确定当前线程是持有锁的线程之后,直接将status置为0,将锁释放。
emmmmm。感觉理解还是不透彻、这里搞个实例外补一波吧
public class Lock{ private boolean isLocked = false; public synchronized void lock() throws InterruptedException{ while(isLocked){ wait(); } isLocked = true; } public synchronized void unlock(){ isLocked = false; notify(); }}使用该锁:public class Count{ Lock lock = new Lock(); public void print(){ lock.lock(); doAdd(); lock.unlock(); } public void doAdd(){ lock.lock(); //do something lock.unlock(); }}
独享锁和共享锁同样是一种概念。我们先介绍一下具体的概念,然后通过ReentrantLock和ReentrantReadWriteLock的源码来介绍独享锁和共享锁。
独享锁也叫排他锁,是指该锁一次只能被一个线程所持有。如果线程T对数据A加上排它锁后,则其他线程不能再对A加任何类型的锁。获得排它锁的线程即能读数据又能修改数据。JDK中的synchronized和JUC中Lock的实现类就是互斥锁。
共享锁是指该锁可被多个线程所持有。如果线程T对数据A加上共享锁后,则其他线程只能对A再加共享锁,不能加排它锁。获得共享锁的线程只能读数据,不能修改数据。
独享锁与共享锁也是通过AQS来实现的,通过实现不同的方法,来实现独享或者共享。
下图为ReentrantReadWriteLock的部分源码:在ReentrantReadWriteLock里面,读锁和写锁的锁主体都是Sync,但读锁和写锁的加锁方式不一样。读锁是共享锁,写锁是独享锁。读锁的共享锁可保证并发读非常高效,而读写、写读、写写的过程互斥,因为读锁和写锁是分离的。所以ReentrantReadWriteLock的并发性相比一般的互斥锁有了很大提升。
那读锁和写锁的具体加锁方式有什么区别呢?在了解源码之前我们需要回顾一下其他知识。
在独享锁中这个值通常是0或者1(如果是重入锁的话state值就是重入的次数),在共享锁中state就是持有锁的数量。但是在ReentrantReadWriteLock中有读、写两把锁,所以需要在一个整型变量state上分别描述读锁和写锁的数量(或者也可以叫状态)。于是将state变量“按位切割”切分成了两个部分,高16位表示读锁状态(读锁个数),低16位表示写锁状态(写锁个数)。如下图所示:
protected final boolean tryAcquire(int acquires) { Thread current = Thread.currentThread(); int c = getState(); // 取到当前锁的个数 int w = exclusiveCount(c); // 取写锁的个数w if (c != 0) { // 如果已经有线程持有了锁(c!=0) // (Note: if c != 0 and w == 0 then shared count != 0) if (w == 0 || current != getExclusiveOwnerThread()) // 如果写线程数(w)为0(换言之存在读锁) 或者持有锁的线程不是当前线程就返回失败 return false; if (w + exclusiveCount(acquires) > MAX_COUNT) // 如果写入锁的数量大于最大数(65535,2的16次方-1)就抛出一个Error。 throw new Error("Maximum lock count exceeded"); // Reentrant acquire setState(c + acquires); return true; } if (writerShouldBlock() || !compareAndSetState(c, c + acquires)) // 如果当且写线程数为0,并且当前线程需要阻塞那么就返回失败;或者如果通过CAS增加写线程数失败也返回失败。 return false; setExclusiveOwnerThread(current); // 如果c=0,w=0或者c>0,w>0(重入),则设置当前线程或锁的拥有者 return true;}
tryAcquire()除了重入条件(当前线程为获取了写锁的线程)之外,增加了一个读锁是否存在的判断。如果存在读锁,则写锁不能被获取,原因在于:必须确保写锁的操作对读锁可见,如果允许读锁在已被获取的情况下对写锁的获取,那么正在运行的其他读线程就无法感知到当前写线程的操作。
因此,只有等待其他读线程都释放了读锁,写锁才能被当前线程获取,而写锁一旦被获取,则其他读写线程的后续访问均被阻塞。写锁的释放与ReentrantLock的释放过程基本类似,每次释放均减少写状态,当写状态为0时表示写锁已被释放,然后等待的读写线程才能够继续访问读写锁,同时前次写线程的修改对后续的读写线程可见。
接着是读锁的代码:
protected final int tryAcquireShared(int unused) { Thread current = Thread.currentThread(); int c = getState(); if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return -1; // 如果其他线程已经获取了写锁,则当前线程获取读锁失败,进入等待状态 int r = sharedCount(c); if (!readerShouldBlock() && r < MAX_COUNT && compareAndSetState(c, c + SHARED_UNIT)) { if (r == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) cachedHoldCounter = rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; } return 1; } return fullTryAcquireShared(current);}
可以看到在tryAcquireShared(int unused)方法中,如果其他线程已经获取了写锁,则当前线程获取读锁失败,进入等待状态。如果当前线程获取了写锁或者写锁未被获取,则当前线程(线程安全,依靠CAS保证)增加读状态,成功获取读锁。读锁的每次释放(线程安全的,可能有多个读线程同时释放读锁)均减少读状态,减少的值是“1<<16”。所以读写锁才能实现读读的过程共享,而读写、写读、写写的过程互斥。
此时,我们再回头看一下互斥锁ReentrantLock中公平锁和非公平锁的加锁源码:
锁的变化会经历如下阶段:
无锁->偏向锁->轻量级锁->重量级锁
比如: 轻量级锁: